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Special Nonlocal Problems for the One-Dimensional Transport Equation 

 
ABSTRACT. 

This paper presents a study of a time-nonlocal problem for the one-dimensional transport 

equation on a semiaxis using semigroup theory. The problem is considered in a Banach space over 

the field of complex numbers. We study the case in which the function defining the incoming flow 

is identically zero. We also indicate necessary conditions for the semigroups obtained during 

solving the problem to be superstable, i.e., have an infinite negative exponential type. In this paper 

the results of the article [7] are used. In that article, a general method for solving similar nonlocal 

problems for differential equations in a Banach space has been presented. It was required to 

confirm the theory of [7] by a numerical study for the transport equation. The superstability of 

semigroups is a significant advantage in solving the problem since it allows us to have a wide 

choice of input data. Taken this approach, the problem can be solved by using a simple iterative 

method that can be easily implemented in practice. It is also shown that the solution is represented 

by a rapidly converging Neumann series. A high efficiency of this method has been confirmed 

during numerous computational experiments. 

Keywords: transport equations, superstable semigroups, iteration method, time-nonlocal 

problem, superstability conditions, Neumann series. 

 

The transport equation is one of the fundamental equations in mathematical physics. It 

describes the transportation of physical quantities (for example, mass, energy, radiation) in an 

environment. The solution of various problems for the transport equation is used in numerous 

fields of science and technology, from astronomy and hydrodynamics to medicine and industry. 

Linear inverse problems for the transport equation often arise in applied mathematical physics. 

In this paper, we study a nonlocal inverse problem for the one-dimensional transport 

equation on a semiaxis. A method for solving this problem is considered in the case when the 

function that specifies the incoming flow is identically zero. It is required to determine the initial 

state of the system according to a known nonlocal condition. The main goal of this study is to 

develop an algorithm for solving the problem and to conduct numerical experiments testing this 

algorithm. 

While studying the problem, we primarily use the result obtained in the article [7], which 

suggests a general algorithm for solving a linear nonlocal problem for a differential equation in a 

Banach space. We also use information from the paper [9], where we study conditions for 

generation of a superstable (quasi-nilpotent) semigroup by a differential transport operator. In this 

work, it has been demonstrated that under certain conditions imposed on the function that defines 
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the transport coefficient, we can obtain a quasi-nilpotent semigroup. The method of solving the 

problem with the help of superstable semigroups makes it possible to widely vary the input data. 

Theoretical information about quasi-nilpotent semigroups was taken from the article [1]. 

In this paper, a general method for solving the nonlocal problem is presented and explicit 

resolving formulas are obtained. Also, information from functional analysis and the theory of 

semigroups has been used (see [2], [4], [6]). Further, the work of the constructed algorithm is tested 

on specific examples modeled using the Python programming language. Numerous experiments 

have been carried out with various inputs. In preparation of this work, materials [1] - [9] from the 

references were used. 

 

First, we shall formulate several concepts from functional analysis necessary for further 

study of the inverse problem in terms of the semigroup theory. Let E denote complex Banach 

space. 

 

Definition 1 

A family of linear bounded operators 𝑈(𝑡), 𝑡 ≥ 0, mapping the Banach space E into itself, is said 

to form a semigroup of class C0, if: 

1. 𝑈(0) is the identity operator, 

2. 𝑈(𝑡1 + 𝑡2) = 𝑈(𝑡1)𝑈(𝑡2) = 𝑈(𝑡2)𝑈(𝑡1) for any 𝑡1, 𝑡2 ≥ 0, 
3. ‖𝑈(𝑡)𝑓 − 𝑓‖ → 0 when 𝑡 → +0 for any element 𝑓 ∈ 𝐸. 
 

Definition 2 

Operator A, given by a formula 

𝐴𝑓 = lim
𝑡→0+

𝑈(𝑡)𝑓 − 𝑓

𝑡
=
𝑑

𝑑𝑡
[𝑈(𝑡)𝑓]|

𝑡=0+
, 

 

with a domain of definition 

𝐷(𝐴) = {𝑓 ∈ 𝐸 | ∃ lim
𝑡→0+

𝑈(𝑡)𝑓 − 𝑓

𝑡
}, 

is called a generator of the semigroup 𝑈(𝑡).  
 

Definition 3 

Linear bounded operator 𝐵:𝐸 → 𝐸 is called quasi-nilpotent if its spectral radius 𝑟(𝐵) equals zero: 

𝑟(𝐵) = lim
𝑘→∞

√‖𝐵𝑘‖
𝑘

= 0. 

 

Definition 4 

A semigroup 𝑈(𝑡) of class 𝐶0 is called superstable (or quasi-nilpotent), if it has an infinite negative 

exponential type: 

𝜔0 ≡ lim
𝑡→+∞

ln‖𝑈(𝑡)‖

𝑡
= −∞. 

This means that for any 𝛼 > 0 there is a constant 𝑀 = 𝑀𝛼 ≥ 1, such that  
‖𝑈(𝑡)‖ ≤ 𝑀𝑒−𝛼𝑡 , 𝑡 ≥ 0. 

 

We consider a forward problem for the transport equation on semiaxis: 

{

𝑢𝑡 + 𝑢𝑥 + 𝜎(𝑥)𝑢 = 0,     𝑥 ≥ 0,     𝑡 ≥ 0,

𝑢(0, 𝑡) = 𝛾(𝑡),

𝑢(𝑥, 0) = 𝑢0(𝑥).

 

Here 𝜎(𝑥) denotes a given absorption coefficient and 𝛾(𝑡) is a given incoming flow. The 

initial condition 𝑢0(𝑥) is also considered to be given. It is required to find the problem’s 
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solution 𝑢(𝑥, 𝑡). The physical interpretation of the function 𝑢(𝑥, 𝑡) is the density of the transported 

substance. 

There is an explicit resolving formula for 𝑢(𝑥, 𝑡): 

𝑢(𝑥, 𝑡) =

{
  
 

  
 
𝛾(𝑡 − 𝑥)exp (−∫𝜎(𝑥 − 𝑠)𝑑𝑠

𝑥

0

) , 0 ≤ 𝑥 ≤ 𝑡,

𝑢0(𝑥 − 𝑡)exp (−∫𝜎(𝑥 − 𝑠)𝑑𝑠

𝑡

0

) , 𝑡 < 𝑥 < +∞,

 

for all 𝑡 ≥ 0. 
Further we set 𝛾(𝑡) ≡ 0. Now, let us consider a time-nonlocal problem: 

{
 
 

 
 𝑢𝑡 + 𝑢𝑥 + 𝜎(𝑥)𝑢 = 0,     𝑥 ≥ 0,     𝑡 ≥ 0,

𝑢(0, 𝑡) = 0,

∫ 𝜂(𝑡)𝑢(𝑥,  𝑡)𝑑𝑡
𝑇

0

= 𝑢1(𝑥).

 

Here 𝜂(𝑡) denotes a given weight function. The function 𝑢1(𝑥) is also considered to be 

given. To find an unknown function 𝑢(𝑥, 𝑡), it is sufficient to restore its initial state 

𝑢(𝑥, 0) =  𝑢0(𝑥). 
Special conditions 𝜎(𝑥) ≥ 0, lim

𝑥→+∞
𝜎(𝑥) = +∞ provide the convergence of the algorithm. 

Further we assume that they are satisfied. 

 

The solution method is as follows. Let 𝐸 ≡ 𝐿1(ℝ+). 
A transport operator with absorption 

𝐴 = −
𝑑

𝑑𝑥
− 𝜎(𝑥),   𝑥 ∈ [0,  +∞), 

with a domain of definition 

𝐷(𝐴) = { 𝑓 ∈ 𝐴𝐶loc(ℝ+):   𝑓 ∈ 𝐸,   𝐴𝑓 ∈ 𝐸,   𝑓(0) = 0 }. 
generates a semigroup of resolving operators: 

𝑈(𝑡)𝑓(𝑥) =

{
 

 
0,    0 ≤ 𝑥 ≤ 𝑡,

𝑓(𝑥 − 𝑡) exp (−∫𝜎(𝑥 − 𝑠)𝑑𝑠

𝑡

0

) ,         𝑡 < 𝑥 < +∞.
 

This semigroup sets a solution of the forward problem with the initial state function 𝑓(𝑥) 
when 𝛾(𝑡) = 0 in the space 𝐸 ≡ 𝐿1(ℝ+). The semigroup is quasi-nilpotent (see [7], [9] for details). 

The function 𝑢0(𝑥) = 𝑢(𝑥, 0) can be found from an operator equation: 

𝛽𝑢0 − 𝐵𝑢0 = 𝑔, 
where 

𝛽 ≡ 𝜂(0) ≠ 0,      𝑔(𝑥) = −𝐴𝑢1(𝑥), 

𝐵 = 𝜂(𝑇)𝑈(𝑇) − ∫𝜂′(𝑡)𝑈(𝑡)𝑑𝑡

𝑇

0

, 

𝑢(𝑡) = 𝑈(𝑡)𝑢0. 
(For the derivation of the operator equation, see [7].) 

The specified operator B is quasi-nilpotent (see [1] for details). Therefore, we get 𝑢0 as 

a Neumann series converging rapidly in 𝐿1-norm: 

𝑢0 =∑  
1

𝛽𝑘+1
𝐵𝑘𝑔

∞

𝑘=0

 =  
1

𝛽
𝑔 +

1

𝛽2
𝐵𝑔 +

1

𝛽3
𝐵2𝑔 + ⋯ . 
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The conditions on the absorption coefficient 𝜎(𝑥) allow us to vary widely the input data and 

almost not limit ourselves in the choice of the weight function 𝜂(𝑡). 
 

Let's also consider the matching conditions. There are several possible situations: 

1) 𝑢1 ∈ 𝐷(𝐴), then 𝑢0 ∈ 𝐸 ≡ 𝐿
1(ℝ+) and 𝑢(𝑡) = 𝑈(𝑡)𝑢0 is generalized solution of the problem. 

2) 𝑢1 ∈ 𝐷(𝐴
2) (𝑢1 ∈ 𝐷(𝐴),   𝐴𝑢1 ∈ 𝐷(𝐴)), then 𝑢0 ∈ 𝐷(𝐴) and 𝑢(𝑡) is classical solution of the 

problem in terms of semigroup theory. 

3) 𝑢1 ∉ 𝐷(𝐴), then the problem is insolvable. 

In the model we are considering, we can obtain sufficient matching conditions. 

Situation 1 

𝑢1 ∈ 𝐶
1[0,  +∞),     𝑢1(0) = 0,     𝑢1 ∈ 𝐿

1(0,  +∞),     𝑢1
′ + 𝜎𝑢1 ∈ 𝐿

1(0,  +∞). 
In this case a generalized solution exists. 

Situation 2 

𝑢1 ∈ 𝐶
2[0,  +∞),     𝑢1(0) = 𝑢1

′ (0) = 0,     𝑢1 ∈ 𝐿
1(0,  +∞), 

𝑢1
′ + 𝜎𝑢1 ∈ 𝐿

1(0,  +∞), 
𝑢1
′′ + 2𝜎𝑢1 + (𝜎

′ + 𝜎2)𝑢1 ∈ 𝐿
1(0,  +∞). 

Here we assume that the derivative 𝜎′(𝑥) exists almost everywhere. In this case a classical solution 

exists. Then 𝑢0(0) = 0 and the resulting function 𝑢(𝑥, 𝑡) will be continuous. 

 

For the monotone convergence of the solution, the following conditions must be met: 

1) 𝜂(𝑡) > 0,     𝜂′(𝑡) ≤ 0    ⇒     𝐵 ≥ 0, 
2) 𝑔(𝑥) ≥ 0    ⇒     𝑢1

′ (𝑥) + 𝜎(𝑥)𝑢1(𝑥) ≥ 0. 
If 𝑔(𝑥) ≥ 0 and the above-mentioned conditions on the 𝜂(𝑡) are met, then the convergence 

will be monotone. If 𝑔(𝑥) < 0 somewhere on the considered segment, then convergence can be 

non-monotone. Therefore, these conditions are sufficient. 

The approximate value �̃�0(𝑥) is effectively restored by the iteration method. Based on this, 

a computer program in the Python programming language was prepared. This program works 

according to the following algorithm.  

Given the operator A and the function 𝑢1(𝑥), we find the function 𝑔(𝑥) using the formula 

𝑔(𝑥) = −𝐴𝑢1(𝑥), 𝑔0 =
𝑔(𝑥)

𝛽
. 

Acting on it by the semigroup 𝑈(𝑡) (i.e., substituting it as an initial condition in the forward 

problem), we find 𝑈(𝑡)𝑔(𝑥). Next, we substitute the resulting array of values into the formula for 

the operator 𝐵 and calculate operator 𝐵𝑔, 

𝑔1 = 𝑔0 +
𝐵𝑔

𝛽2
. 

 At the next stage, we substitute the values of the operator 𝐵𝑔 into the forward problem as 

an initial condition, then find 𝐵𝐵𝑔 and so on, 

𝑔𝑛 = 𝑔𝑛−1 +
𝐵𝑛𝑔

𝛽𝑛+1
. 

The stop condition is the difference between the last two calculated terms of the series by 

less than 1%. It is sufficient to calculate a finite number of terms in the Neumann series, since the 

values of the terms decrease rapidly due to the properties of the operator 𝐵 (see details in [7]).  

 

In this work, a lot of computational experiments were performed, which confirmed the high 

reliability of the chosen method. The program sets the necessary mathematical functions and 

performs calculations according to the algorithm, as well as the visualization of the results. Let us 

specifically explain that in this program the values 𝑢0(𝑥) are initially set, then the values 𝑢1(𝑥) 
are calculated through them, after which the values �̃�0(𝑥) are restored using the algorithm and  are 

compared with the initially set ones. The method makes it possible to vary the weight functions. 

During the experiments, the following were chosen: 
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 𝜂(𝑡) = 1 

 𝜂(𝑡) =
1

1+𝑡2
 

 𝜂(𝑡) = (1 + 𝑡)2 

 𝜂(𝑡) = 1 + 𝑡 
To demonstrate a working example, let us take the last function from this list. 

 

Input data: 

𝜎(𝑥) = ln+(𝑥 − 3) = {
0, 0 ≤ 𝑥 ≤ 3,
ln (𝑥 − 2), 𝑥 ≥ 3,

 

𝑢0(𝑥) = 10𝑥
2𝑒−𝑥 ,  

𝜂(𝑡) = 1 + 𝑡,  
𝑇 = 2,    0 ≤ 𝑥 ≤ 20.  

In this case 𝛽 = 𝜂(0) = 1. 
Number of iterations 𝑁 = 19. 

Convergence will be non-monotone as 𝜂′(𝑡) = 1 ≰ 0. 

The graph of the solution of the direct problem 𝑢(𝑥, 𝑡) for various 𝑡 for such data: 

 

Fig. 1: Function 𝑢(𝑥, 𝑡). 

Program results: 
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Fig. 2: Resulting function 𝑢1(𝑥). 

 

Fig. 3: Function 𝑔(𝑥). 

It can be seen that 𝑔(𝑥) ≤ 0 somewhere, which also implies that the solution is non-monotone.  

 

Fig. 4: Original function 𝑢0(𝑥) and solution iterations. 
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Fig. 5: Original function 𝑢0(𝑥) and solution iterations. 

 

Fig. 6: Original function 𝑢0(𝑥) and solution iterations. 

 

Fig. 7: Original function 𝑢0(𝑥) and solution iterations. 
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We managed to obtain the exact solution in 4 iterations. 

 

Fig. 8: Difference between original and restored values of 𝑢0(𝑥) 

As you can see from the last graph, the error in calculating 𝑢0(𝑥) is less than 1%. 

 

In this paper, we have studied a time-nonlocal problem for the one-dimensional simple 

transport equation with a zero incoming flow. 

 A theoretical scheme for solving a nonlocal problem has been developed and explicit 

resolving formulas have been obtained. 

 Based on the obtained formulas, an algorithm for solving a nonlocal problem has 

been developed. 

 A computer program has been written that implements a theoretical algorithm and 

visualizes the results of calculations. 

 A series of computational experiments has been carried out for various values of the 

input data, confirming the high reliability of the algorithm. 

 Matching conditions for a nonlocal problem have been studied. 

 On a particular example, the convergence rate of the algorithm has been studied and 

an estimate has been given for the required number of iterations. The monotonicity 

of the solution convergence has also been investigated. 

As a result of this work, all the set goals have been achieved and the study can be considered 

completed. In further research, it is planned to study the problem with a non-zero input flow, as 

well as to obtain an estimate for the convergence rate of the algorithm in general case. 
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